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Theoretical Analysis of Acoustic Signal
Generation in Materials Irradiated

with Microwave Energy
DAVID E. BORTH, MEMBER, IEEE, AND CHARLES A. CAIN, MEMBER, lEEE

Abstract—Stress gradients generated by thermal expansion,

electrostriction, and radiation pressure are sources of elastic waves in
microwave irradiated materials. A theoretical analysis taking into

account induced volume and surface forces due to these interaction
mechanisms is presented. Complete solutions of the dynamical

equations for the one-dimensional special case are given for different
boundary conditions. The closed-form solutions were found to consist
of both a stationary part, whose effect is important only in the
immesKate region of the incident electromagnetic wave, and a
traveling part which propagates through the elastic material. Expres-

sions for the Fourier transforms of these solutions are also given. To

quantify these results, pressure and displacement waveforms in
microwave irradiated physiological saline were computed. Thermal

expansion was considerably more effective {ban either electro-

striction or radiation pressure in converting electromagnetic energy
to acoustic energy.

I. INTRODUCTION

THE RAPID ABSORPTION of electromagnetic energy

in irradiated elastic media can result in easily detectable

acoustic signals. Stress waves generated in absorbing media

due to interaction with laser radiation have been studied by

a number of investigators [1]–[5], [9]. In addition, acoustic

transients can be generated in irradiated materials by pulsed

electron beams [8]–[10], or by pulses of microwave radiation

[9], [11]-[13].

Human subjects hear a distinct “click” when the head is

irradiated with a high-energy microwave pulse [13]-[15].

Microwave induced acoustic effects in other mammalian

auditory systems have been reported [13], [16]. It is likely

that the “hearing” effect and the generation of acoustic

signals in irradiated materials are closely related

phenomena.

Several physical mechanisms have been suggested for the

energy transfer between an electromagnetic wave and the

induced elastic wave in the interacting medium [1]–[13]. In

this paper, a theoretical analysis is presented in which the
following likely candidates for the causative mechanism are

considered: the volume forces due to thermal stress and

electrostriction, and the surface force due to radiation

pressure.
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II. THEORETICAL ANALYSIS

To facilitate a quantitative analysis, the problem will be

considered within the framework of the following simplify-

ing assumptions. The irradiated media are assumed to be

electrically and elastically homogeneous and isotropic. Only

a small fraction of the incident radiation ultimately appears

as acoustic energy. Acoustic attenuation will be neglected

and uncoupled thermoplastic theory will be employed, i.e.,

the temperature distribution will be obtained by solution of

the heat equation independent of the mechanical state of the

medium. Finally, all strain components are assumed to be

small enough so that their squares and products are

negligible.

In what follows, let ~ij and eij denote the components Of

the stress and strain tensors, respectively, for an electrically

and elastically homogeneous and isotropic material. Let

@(x,t) denote the increment of temperature above some

reference temperature for which the material is in a state of

zero stress and strain. The strain components are defined in

terms of the displacement vector u having components u 1,

U2, and Uq according to [17]:

‘=%+%)
(1)

Thermal Expansion

The components of the stress tensor relating stress to

strain and excess temperature are [17], [18]

rJ,j = 2Peij + Jekkdij – Pd(x$)bij (2)

where dij is the Kronecker delta, 1 and Pare the usual Lame

constants, and

ekk = ell + e22 + e33. (3)

If a is the coefficient of linear thermal expansion and B is the

bulk modulus of the material, then [17]

B = (32+ 2v) a = 3BIx. (4)

Electrostriction

Let Ei denote the components of the electric field intensity

E in the elastic dielectric. The electrostrictive effect is the

deformation of a dielectric medium whose accompanying

strains are proportional to the even powers of the electric

field intensity. The basic field equations governing electro-
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striction have been derived from thermodynamic arguments

[19], [20].
The most general linear relationship that cam be con-

structed between stress, strain, and the quadratic powers of

Ei is [21]

aij = 2~eij + ~ekkdij + aEiEj + bEkEk~ij (5)

where a and b are descriptive of the electrical properties of

the dielectric and are expressed below in terms of measur-

able quantities, and

EkEk= E; +E; +E~. (6)

Under isothermal conditions only the strains influence

the anisotropy of the deformed dielectric. Because the

strains are assumed to be linear, we may write the compo-

nents of the dielectric tensor [20], [21]:

Eij = &8ij + Cl eij + &2ekk~ij (7)

where .s is the permittivity of the undeformed media. The

scalar constants e~ and &z are characteristics of the electro-

strictive property and, except in special cases, must be

determined experimentally. Constants a and b are related to

81 and Ez by [20], [21]

a=2E —&~ b = –(&l +&z). (8)

Dynamical Equations

The differential equations of motion of an elastic body are

[17], [18]

where p is the density of the medium and Fi are components

of the body force F.

The dynamical equations of thermoelasticity can be

derived by substituting (2) into (9). Assuming body force Fis

zero and all partial derivatives are continuous, we obtain

A more compact vector form of (10) is

pv% + (i + p)v(v “ u) – five = p ~ (11)

where

V“u=ekk. (12)
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The dynamical equations of electrostriction can be ob-

tained by substituting (5) into (9). Again, assuming body

force F is zero and all partial derivatives are continuous, we

obtain

a
,av2u3 + (~ + V) — ekk + a

ax3
~E1E3 +; E2E3
axl

a
5 (13)+b—-EkEk=p at2

ax3

On Determining O(x,t)

In a region where energy is being dissipated as heat, O(x,t)

can be determined by solving, with appropriate boundary

and initial conditions, the heat conduction equation [22],
[23]

h(x,t) 1 aq~,t)
Vw(x,t) + -y = – —

~ at
(14)

where K is the thermal diffusivity, K is the thermal conduct-

ivity, and h(x,t) is the energy dissipated as heat per unit

volume per unit time. In ‘a material exposed to a time-

periodic electromagnetic wave, the mean heat flux is [19]

h(x,t)= –Re V “ P (15)

where P is the complex Poynting vector

P=~Ex H* (16)

His the magnetic field intensity, and the asterisk denotes the

conjugate. It should be noted that the expression for h(x,t) as

written, in (15) suppresses the harmonic part of heat flux in a

material exposed to a time-periodic electromagnetic wave.

The harmonic term results in a temperature component

varying at th~ frequency 2co, where co is the angular

frequency of the incident electromagnetic wave [9]; in what

follows’ we consider only the mean value of I+r,t)as ex-

pressed in (15).

One-Dimensional Problem

Assume a plane electromagnetic wave is incident
normally on a semi-infinite body which is elastically and

dielectrically homogeneous and isotropic. The boundary

surface of the irradiated material is formed by the plane

xl = O. Thus the Poynting vector is directed along the x ~

axis.
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In this one-dimensional problem, derivatives with respect

to Xz and X3 vanish; hence

e22 = e~~ = O. (17)

For simplicity assume the plane wave is linearly polarized

along the Xz axis. Then,

EI=E3=0 and H~=H~=o. (18)

Thus, from (10) and (13), we obtain the following nonhomo-

geneous one-dimensional wave equations for the thermo-

plastic and electrostrictive cases, respectively:

and

(19)

(20)

where v, the velocity of elastic wave propagation, is related

to the Lam6 constants by

pvz = (a+ 2p). (21)

In a fluid it can be shown (see [19, p. 145]) that

a=O and b= –~p;. (22)

Making use of the Clausius-Mossotti law [19],

b = –:(s, – l)(e, + 2) (23)

where &, is the relative dielectric constant and EOis the

permittivity of free space. Therefore, for a fluid dielectric,

(20) can be written as

a%l z a%l
~ (8, – 1)(.s,+ 2)+ E;. (24)

at2 – v ax; = 6p 1

The bulk modulus B in a fluid can be expressed as

B = pU2 (25)

so that, using (25) and (4), (19) can be written as

a%l z a%l
—-= –3V2~&e.

atz – u ax:
(26)

A time-periodic electromagnetic wave is often expressed

in terms of the mean intensit y of the energy flow Z(x,t)where

Z[x,t) = Re P = ~ Re (E x H*). (27)

For the one-dimensional problem, the transmitted mean
intensity in the elastic dielectric is

(28)

where q is the intrinsic impedmice of the material.

The excess temperature, a function only of xl and time,

can be computed by solving the one-dimensional heat

conduction equation

h(xl,t) 1 ao(xl,t)
~e(x,,t)+y=i~
ax:

(29)

using the appropriate boundary and initial conditions.

From (15) and (27),

h(xl,t) = –Re V “ P=

Rectangular Microwave Pulses

For rectangular incident pulses

has the form

~T(x~,t) = ~~f?-2yx’,

. 0, elsewhere (31)

–LT(xl,t).
axl

(30)

the transmitted intensity

O<t<T

where 10 is the power density at x ~ = O, y is the reciprocal of

the skin depth at a given frequency, and T is the pulsewidth.

The mean heat flux h(xl,t) can be computed from (30) and

(31):

h(xl,t) = 2y10e-2’x’, O<t<T

= o, elsewhere. (32)

During the duration of the rectangular pulse (O < t< T),

the excess temperature O(xl,t), the solution of (29) with (32)

w the forcing function, is [22], [24]

[!
~(xbt)= >4 ierfc ~ – *e-2yx1

~ e(4y2@2-2YX,)

+ 4Ky

.[ 1
10 .e(4yZo2 + 2YXI)

. erfc 2y@–z +—
24 4yK

[1
“ erfc 2y@+ z

24
(33)

where ~ = ~, erf is the error function, erfc = 1 – erf, and

ierfc (z) = ~ m erfc (t) dt.
z

For short microwave pulses where heat conduction can be

ignored,

tl(xl,t) = ; j: h(xl,t) dt =
2ytIo e- 2YX’

ps ‘

O<t<T (34)

where S is the specific heat of the material. It can be shown

that (33) reduces to (34) when x ~/24 >1 and 4y2@2 <1 (see

Appendix).

In nonmetallic materials, the elastic transients propagate

away from the heated region in microseconds while it takes

milliseconds for the temperature to decay. Therefore for

t > T we assume

f3(x1,t) c%
2yTIoe-2y”

t>T.
ps ‘

(35)
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Substituting (34) and (35) into (26) we obtain

a%l z a%l –2YXI

atz ‘v ax; ‘Kite ‘
O<t<T

= K1 Te-2Yx’, t>T

= o, t<o

where

12y%%lo
KI =

ps “

(36)

(37)

For the electrostrictive case assuming a fluid material,

a%l za%l
at2 – v ax; = ‘ze-2’x”

O<t<T (38)

. 0, elsewhere

where

2y Re qCO(e,– l)(e, + 2)10
K2 =

3p
(39)

For rectangular microwave pulses, solutions to (36) and

(38) will now be given subject to appropriate boundary

conditions.

III. SOLUTIONS

In the solutions to (36) and (38) which follow, expressions

will be given for both displacement u I(x ~,t) and pressure

where the pressure p(xl,t) is simply the negative of the

normal stress cr(x ~,t).Solutions will include both the station-

ary and traveling wave terms for both free- and contrained-

surface boundary conditions.

Boundary and Initial Conditions

For the thermal-expansion mechanism, the relation

governing acoustic pressure and displacement may be found

from the one-dimensional form of (2):

aul(xl,t)
p(xl,t) = – (a + 2p) ax + /?@(x~,t ). (40)

1

Combining (40) with the results of (4), (21), ancl (25), the

following relationship between p(xl,t), ul(xl,t), and 6(x ,,t)

may be found:

aul(xl,t)
p(xl,t) = –pvz axl + 3pv%e(x1,t). (41)

Finally, substituting the results of (34) and (35) into (41), the

pressureedisplacement relationship for the thermal-

expansion mechanism may be found:

z aul(xl,t) + 6LXYU210~_2yX,
J7(xl,t) = –flu

ax~ s

- (tU(t) -(t - T)U(t - T)) (42)

where U(t) is the unit step function.

In a similar manner, the relation governing acoustic

pressure and displacement may be found for the electro-

striction mechanism. The one-dimensional form of (5) is

p(xl,t) = – (A + 2/t) au?$:’t) -(a+ b)E;. (43)

Substituting (21}(23) and (28) into (43), we obtain

z aul(xl,t)
p(xl,t) = –pv

axl

+ IT(Xl,t)EO(&r– l)(&, + 2) Re [q].

3
(44)

Finally, substituting the results of (31) into (41), the

pressure-displaeement relationship for the electrostriction

mechanism may be found:

z attl(xl,t) + IOEO(&r– l)(&r + 2) Re-[q]
p(xl,t) = –pv

axi 3

“ e-2’xl[w)- w - w (45)

For a constrained surface, the boundary conditions are

Ul(o,t) = o lim Iul(xl,t)l < m (46)
x,-m

which hold for both mechanisms.

For a free surface, an additional mechanism for generat-

ing acoustic waves must be incorporated into the boundary

conditions. A surface radiation pressure is now present on

the materials and forms a part of the free-surface boundary

conditions. For both bulk mechanisms, the general bound-

ary conditions are

1

21r(o,t)
O<t<T

p(o,t) = , c ‘

IO, t>T (47)

lim Iul(xl,t)l < m (48)
Xl+cc

where I,(O,t) is the intensity of the reflected wave at the

surface and c is the speed of light. For thermal expansion,

(42) combined with (47) becomes

aul(xl,t) = @YIo

axl
— [tU(t)- (t- T)U(t - T)]

Xl=o ps

— * [u(t) - U(t - T)]. (49)

For electrostriction, (45) combined with (47) becomes

aul(xl,t)

[

_ 10 Re [q]&o(&, – 1)(8, +2) 21r(0,t)

axl –Xl=o 3pv2 pvzc I

~ [u(t) - U(t - T)]. (50)

In all cases the initial conditions are

aul(X~,t)
at

= Ul(xl,t) = o.
f=o ,Xn

(51)
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Solution Methods

In addition to finding the solution to (36) and (38)in terms

of the displacement u l(x ~,t),the complete analysis of the

electromagnetic field induced acoustic waves should include

finding the pressure p(xl,t) as well as the magnitude of the

Fourier transforms of u l(x ~,t) and p(x ~,t). In the following,

equations (36) and (38) were first solved for the displacement

UI (x ~,t ) and the corresponding pressure function p(x ~,t) was

then found using equation (42) or (45). After u l(x ~,t)and

p(xl,t) have been determined, the Fourier transforms of

these quantities can then be taken.

Equations (36) and (38) may be solved using several

different techniques. One technique, used by Hu [6] in

solving a similar problem, involves first removing the time

dependency via a Laplace transformation and then finding

the time-independent Green function under the given

boundary conditions. The time-independent solutions to

(36) and (38) are then found by the use of superposition of

the Green function with the spatial source distribution.

Finally, applying an inverse Laplace transform to the time-

independent solution restores the time dependency to the

solution.

Considering the geometry of the problem, ? somewhat

simpler approach is to utilize the technique used by Gour-

nay [4]. First the equation together with the appropriate

boundary and initial conditions is Laplace transformed to

remove the time dependency. The resulting equation is now

a second-order ordinary differential equation in space,

which is easily solved by finding the homogeneous and

particular solution using the standard techniques of ordi-

nary differential equations. The boundary and initial condi-
tions are then applied to the time-independent solution. The

inverse Laplace transform is then taken to yield the com-

plete solutions to (36) and (38). An additional benefit of this

technique is the ease in obtaining the Fourier transform of

UI (x ~,t) and p(x ~,t). Providing the region of convergence of

the Laplace transform of u l(x ~,t) or p(x ~,t) contains the jca

axis in its interior, a simple transformation of s to @

converts the Laplace transform to the Fourier transform

[25]. This technique has been used to find the solutions given

below.

The displacements and pressures, due to each of the

various electromagnetic-to-acoustic wave mechanisms dis-

cussed above, will be given in three parts below, for both the
free-surface and constrained-surface boundary conditions.

In the first, part, the displacement and pressure due to

the bulk thermal-expansion mechanism will be found for

both boundary conditions. Next, the displacements and

pressure due to the electrostriction mechanism for the two

boundary conditions will be found. Finally, the magnitude

functions of the Fourier transforms of u I(x ~,t) and p(x ~,t)

will be determined for all the electromagnetic-to-acoustic

energy mechanisms considered above, for both free- and

constrained-surface boundary conditions.

Thermal Expansion

Constrained Surface: If we assume the surface of the

material to be constrained, (36) must be solved subject to the

aforementioned boundary and initial conditions. Subject to

these conditions the solution to equation (36) may be

written in two parts: a stationary part denoted by ul~~ and a

traveling part denoted by Ul,,. Therefore, the displacement

due to thermal expansion becomes

()u~(x~,t)= ul~T(xl,t) + ‘lTR ‘1$ (52)

where

t&(x,,t) = = [-~e-’~xlu(t) + (t - T)e-2yx’U(t - T)]

(53)

and

{[ 1
ul,~(xl,t) = ~ ~sinh 2yvt U(t)

277)

[( )

1
+

( )1
t–fi –—sinh2yv t–~

v 2yv v

(1“ u t–~
v

-[

e–’yx,

1
~ sinh 2yu(t – T) U(t – T)

+ [(–t+ T+;
)

+i?inh2’vl-T-31

“ ‘(t-T-3 (54)

The pressure p(xl,t) due to thermal expansion in a fluid is

given by (42). A general expression for the pressure wave

with a thermal-stress forcing function is

3~~~o / -Zyx,
P(xd) =~,[e sinh 2yot] U(t)

[ ( )1
+ l–cosh2yu t–~

v

()
. U t – ~ – [e-’’” sinh 2yv(t – T)]U(t – T)

+[cosh2yv(t-T-:] -l] U(t-T-;)~.

(55)

Free Surface: For a free surface, considering only thern~al-

expansion effects, the boundary condition on the materials is

(49). Solving (36) under these conditions for the displace-

ment, UI (x ~,t ) is given by (52), where U1 ,,(x J) is given b
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(53) and ulTR(xl,t) is given by

z4,TR(x,,t)= 3u~~~’xl {[sinh 2yvt]U(t)

- [sinh 2yv(t - T)]U(t - T)}

,[*(t-?X]+*

“ ‘-c0sh2’”FwH(

-[0(’-’-:1+%

“ 1-c0sh2’o(t-T-w(

““(t-T-:)
(56)

Using (42)the general expression for the pressure wave for

a free-surface boundary condition is

31XV10e- ‘y”
p(xl,t) = ~ {[sinh 2yvt]U(t)

- [sinh 2yu(t - T)]U(t - T)}

[

2z,(o,t) 3cwI~ .
+— —

( )1
— smh 2yv t – ~

c s v

,( 1
“ u t–~

u

[–-Ts’nh2’”!-T-%1

21r(o,t) 3cwl~ .—

“i--i

xl
(57)

v“

Electrostriction

Constrained Surface: For a constrained surface,, the solu-

tion to (38) is given by (52) where

ul,T(x,,t) =
Re [q]eO(e, – 1)(6, + 2)10

6yv2p

. [e-2 Yx1~(t - T).
and

Ul,,(xl,t) =
Re [q]eO(c, – 1)(c, + 2)10

6yv2p

{
. [e-z’x’ cosh 2yvt]U(t)

e-2’x’U(t)] (58)

- [e-zyx’ cosh 2yv(t - T)]U(t - T]I

[ ( .il”(’-’$
+ l–cosh’yv t–~

‘[c0sh2’uwH

““(t-T-:)l
(59)
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Using (45) to relate stress to displacement, an expression

can be obtained for p(x ~,t ). A general expression for the

pressure wave with the electrostriction forcing function is

Re [q]&O(er – I)(&, + 2)10
p(xl,t) =

3

{
. [e-2yx’ cosh 2yvt]U(t)

- [e-2yx’ cosh 2yo(t - T)]U(t - T)

- [sinh2+++3

‘[sinh2+T-wu(t-T-31

(60)

Free Sur@ce: For a free surface, the solution to (38) is

given by (52), where ul,,(xl,t) is given by (58) and

zllTR(x,,t) =
Re [q]eO(&r – 1)(c, + 2)z0

6yv2p

{
. [e-2’x’ cosh 2yvt]U(t)

- [sinh2yv(t-:H-:)

- [e-2Yx’ cosh 2yv(t - T)]U(t - T)

+[sinh2yv(t-T-~)] U(t-T-~)~

‘0{[’-+(+

-[t-T-w”-T-w ’61)

Using (46) to relate stress and displacement, the corre-

sponding pressure function is

Re [q]EJE, – 1)(s,+ 2)10
p(xl,t) =

3

I e-2Yx,
“ ,[ cosh 2yvt] U(t)

- [c0sh2yv(t-wt-:)

- [e-’’” cosh 2yv(t - T)]U(t -T)

‘lc0sh2yv(t-T-w-T-:)1

‘+[”(t-:)-u(t-T-:)l
(62)
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IV. FOURIER TRANSFORMS V. AN EXAMPLE

The spectral content of the displacement and stress From the above equations, it is possible to compute both

functions is particularly pertinent to the study of the micro- the displacement and stress waveforms in a semi-infinite

wave hearing phenomenon. Expressions of the magnitudes fluid irradiated with a square microwave pulse. As an

of the Fourier transforms of the respective functions are example, consider the result of irradiating physiological

given below. Approximations are given when the exact form saline with a lo-ps-wide 3.0-GHz microwave pulse with 27

of the expression is very lengthy. All approximations hold W/cm2 incident power density. For physiological saline, the

for 2yx1 >1. surface transmitted power density would then be about 10

Constrained Surface

Thermal Expansion:

12JZav2y210
I F[ul(x,,t)] I = ~s ‘1-cOs’@T)l1’2(1 +e-2’xl(e-2’x’-2 c0s(@:)))1’2 (~3)

0.)4 + 4oWy2

[

12fiav3y210 (1 – cos (coT))l/2
lF~(x,,t)] I = s

Electrostriction:
1W3 + 4oJv2y2 “

lF[ul(xl,t)] I =
2~y Re [q]eO(e, – 1)(c, + 2)10

3p

-[

‘l+cOs@t)1’’2[1+e-2’’’2e-2’x’-2c0s + “2( )11 ]
CO(CO2+ 4v2y2)

Iq-p(xl,t)]IE
2@yv Re [q]&O(&, – l)(&, + 2)10 [[l + cos (OJT)]l/2 ]

3
. .-a.

Free Surface:

As noted above, when the interface surface is considered

to be free, an additional forcing function on the material

appears in the form of the surface-radiation-pressure bound-

ary condition.

The surface radiation pressure will be treated as a separate

forcing function in the Fourier transforms below. For the

thermal-expansion forcing function,

[

6~avy10 [1 – cos (cot)] l/2
lF[ul(xl,t)] I = ~S

@(@z + 4u2y2) 1
(67)

[

6@w2y10 [1 – COS (coT)]l/2
[ F~(xl,t)] I m S

1
. (68)

(02 + 4v2y2

For the electrostriction forcing function,

lF[ul(xl,t)] I s
4@y2u Re [q]eO(er – l)(e, + 2)10

3

[

. [1 - Cos (oX)]’/2

02(02 + 4v2y2)1

IF~(xl,t)] I m
4fipy2u2 Re [q]&O(e, – l)(&~ + 2)~0

3

‘[

[1 - cos (OJT)]’/2

IoJ(co2 + 4v2y2) “

For the surjace-radiation-pressure boundary condition,

[

2@,(0,t) [1 – cos (mT)]l/2
,t)] 1 =

pvc oJ2

[

2@~,(0,t) [1 – cos (coT)]l/2
,t)] / =

c co

(69)

(70)

(71)

, (72)

(64)

(65)

[ co’+ 4u’y’ ]
.,

W/cmz. The appropriate physical constants for this specific

case are listed in Table I.

At a distance of 10 cm inside the fluid, the peak displace-

ment and pressure values were computed for the two bulk

mechanisms in the constrained-surface case and the two

bulk mechanisms plus the surface radiation pressure in the

free-surface case. These peak values are listed in Table II.

Some representative waveforms are shown in Figs. 14.

Figs. 1 and 2 show, respectively, the pressure versus time

waveforms due to thermal expansion alone for the

constrained- and free-surface boundary conditions. Figs. 3

and 4 show the respective magnitude plots of the Fourier

transforms of Figs. 1 and 2.

VI. DISCUSSION

Figs. 1 and 2 are in general agreement with the experimen-

tal results previously obtained by Foster and Finch [11],

Oswald et al. [10], Carome et al. [2], Goumay [4], Bushnell

and McCloskey [7], and White [9]. References [2], [4], and

[9], have presented experimental results of stress develop-
ment in liquids by irradiation with lasers. Reference [7] has

presented similar experimental results using solids irra-

diated with lasers, while [10] has presented experimental

results of displacement in solids due to electron-beam

irradiation. Finally, both [9] and [11] have obtained exper-

imental results for microwave induced elastic waves in

liquids. The results of Foster and Finch [11], in particular,

tend to support the assumptions made in arriving at (36)

above.



BORTH AND CAIN: ACOUSTIC SIGNAL GENERATION 951

TABLE I
CONSTANTS IJSBD FOR COMPUTATION OF DISPLACEMENT

AND STRESSWAVSFORMS IN PHYSIOLOGICAL SALINE

SYMBOL pRopERTf UNITS VALUE

rr coeff. of llnear (Oc) -1 10-4
thermal expansion

P volume density gm/cm3 1.0

v speed of suund cm/sec 1.5[105)

s spcclfic heat ergs/gm°C 4.19(107)
-——

Y3GIIZ
-1reciprocal of the cm 0.62

skin depth
.— ——-—

c speed of 1 ight cm/sec 3(101”)
.—_—_—— ______

< rclai. ivc dir. lectric CO II-
r’ ‘—

dinlcnslonlcs~ 80

stant of pllyslolo~:ic:il
saline

— _— .— —-—..——

n intrinsic in}pc~d.]ncc of 011111s 44.1 + j.77

l)hy::iolo~:ic;ll sal inc
.. —— ________ _-— —._— —— _ . ——— ——.. __

75 T 1.0 –—

0.8 - -
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Fig. 1. Pressure versus time for the thermal-expansion
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Fig. 3. Normalized magnitude plot of the Fourier transform of pressure

for the thermal-expansion mechanism—constrained-surfacecase.60
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Figs. 3 and 4 illustrate the low-pass characteristics of the

electromagnetic-to-elastic wave conversion process via the

thermal-expansion mechanism. Although not treated in
the above analysis, consideration of the losses due to

0.2

0.0 L
,00 ,“.l

FREQUENCY (Hz)

Fig. 4. Normalized magnitude plot of the Fourier transform of pressure
for the thermal-expansion mechanism—free-surfacecase.
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TABLE II
PEAK VALUES DISPLACEMENT AND PRESSURE AT x = 10 cm

INSIDE PHYSIOLOGICAL SALINE IRRADIATED WITH A
3-GHz 1O-VS-WIDE PULSE. 10= 10 W/cm’ (PEAK)

Forcing Function Form of Solution Peak Value Units

A. Constrained Surface Bounda~y Condition

Thermal Expansion Displacement 7.17(10-9) cm

Elect restriction Displacement 1.8(10-11) cm
.

Thermal Expansion Pressure 65.04 clyncs/cm2

Elcctrostriction Pressure 3.ss(10-1) dynes/cm2

B. Free Surface Boundary Condition

Thermal Expansion Displacement 5.13(10-9) cm

Elcctrostriction Displacement 4.17 (10-]1) cm

Surface Radi:ltion
Pressure Displacement 7.41(10-13) cm

“1’hcrmal Expansion Pressure 44.22 2clyncs /cm

Elect restriction l’ressurc 5.09(10-1) 2dync5 /cm

Surf:lcc Radlztion
pTCSSLITC Pressure l . 111 (1(1-~) 2dyn<~5 /cm

_—-— —..—

dispersive elastic wave attenuation would tend to further

attenuate the high-frequency components of the displace-

ment and pressure waves.

Although the theoretical analysis of the thermal-

expansion mechanism presented in this paper is in general

agreement with analyses presented elsewhere, some differ-

ences should be pointed out. Our analysis of the thermal-

expansion mechanism for the one-dimensional problem

results in a nonhomogeneous wave equation (equation (19))

with a forcing function greater by a factor of three than that

found in previous analyses [2], [4], [9]. Essentially our

analysis shows that the volume coefficient of thermal expan-

sion (3u) should be employed in the one-dimensional case

instead of the linear coefficient of thermal expansion (a).

With the exception of this constant, our analysis results in

essentially the same traveling wave solutions as presented by

Carome et al. [2] and Gourney [4]. Our solutions are more

complete, however, in that both the stationary and traveling

components are considered. Our solutions are also pre-

sented in a form more readily adapted to computing actual

waveforms in that no changes in the variables x ~ and tare

necessary to interpret results.
A general theoretical analysis of stress wave generation by

electrostriction is also presented with complete solutions for

the one-dimensional special case. In addition, complete

solutions are given for the one-dimensional case where

surface forces due to radiation pressure are present. Fourier

transforms of all traveling wave solutions are presented as

an aid in computing the spectral content of the electro-

magnetically induced acoustic signals. The spectra of

induced acoustic waveforms is of particular usefulness in the

study of the microwave hearing phenomenon.

Applications of the phenomena discussed in this paper

have been described elsewhere [1]-[1 1], but particularly by

White [8], [9]. These phenomena can be used to measure

properties of the input electromagnetic radiation, properties

of the irradiated material, and as a transducer for generation

of acoustic signals in elastic materials.

VII. CONCLUSIONS

Three different physical transduction mechanisms for

converting electromagnetic energy to acoustic energy have

been studied in the above analysis. A numerical example was

considered in which physiological saline was irradiated with

pulsed microwave energy and the resulting displacements,

pressures, and magnitude plots of the Fourier transform of

these quantities were computed for each of the three trans-

duction mechanisms. For the example of an irradiated

semi-infinite layer of physiological saline, the computed

peak pressure amplitude due to thermal expansion is much

greater than the peak pressure generated by either electro-

striction or surface radiation pressure.

For the constrained-surface case, a 10-ps-wide 3.O-GHZ

pulse having an incident intensity of about 27 W/cmz

resulted in a computed peak pressure of approximately 65

dyn/cm2 (see Fig. 1). Moreover, the spectral content of the

waveform is predominately below 20 kHz as shown in Fig. 3.

Such an elastic wave, if generated in a human head, might

reach the cochlea via bone conduction causing a distinct

auditory sensation.

However, the human head is not a semi-infinite layer of

physiological saline, but rather an aspherical multilayer

body with a semirigid surface. The acoustic properties of the

various tissue layers of the head are not well known at audio

frequencies. The above analysis considered an elastic mate-

rial in which only longitudinal acoustic waves are generated

and propagated. For analysis of acoustic pulses generated in

the human head, it will be necessary to also consider shear

wave generation and propagation. The characteristics of the
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acoustic signal which reaches the ear are also lik:ely to be

determined in part by the natural frequencies (acoustic

resonances) of the head itself. Until these aspects are con-

sidered in detail, the above work provides a useful compari-

son of three different electromagnetic-to-acoustic energy

transduction processes.

In the above analysis it was stated that under certain

conditions (33 ) reduced to (34), resulting in a simplified

expression for the excess temperature function. In what

follows this simplification is justified.

Equation (33) may be rewritten as follows:

‘(x’) =w-(i)(’-erfkl)+$e -(x’zo)’]

10 ~–zyx.

2yK

X!?_~,42@2-2x[~- erf[2y@_~)]
+ 4Ky

‘e(4y2’2+2’x)[’-erf(2y@ +*ll ‘A’)+ 4Ky

where the identities ierfc (z) = – z erfc (z) + (l/~)e-”

and erfc (z) = 1 – erf (z) have been used. As stated above,

the two conditions necessary for (33) to simplify to (34) are

x

24
—>1 (A2)

and

4y’42 <1. (A3)

From these two conditions, it follows that

x

24
— p 2yrp.

Applying (A4) to (Al) results in

‘k 1

_ ‘–(x/2w

2yi

. {e4Y2@2-zYx[~+~rf~-

+e(’y’~+’x)[l-erf(;)i

(A4)

t -~
41Ky

(A5)

where the identity erf ( – z) = – erf (z) has been used. For

large values of its argument z,

lim erf (z)= 1.

z-m

For example, for z >10, 1> erf (z) >1 – 2 x 10-44 [26].

Hence, applying condition (A2) to (A5)

Expanding the term in brackets into a Taylor series and

applying condition (A3)

~o -2,.[1 + (4y2&) – 1]
e(x,t)

x/24> 1

and 4y%j2< 1 “me

2YZ042 e- Zy.——

K
(A7)

where the higher order terms in the series expansion have

been dropped because of condition (A3).

Finally, noting that

H
4 = (~t)l/2= : t 1’2

(A7) reduces to

x/2&JF 1 W1O e- Zyx
13(x,t)

and 41JW <1 = ps

(A8)

(A9)

which is (34).

A question remains as to whether conditions (A2) and

(A3), in fact, hold for the case of a liquid irradiated with

microwave pulses. For the example considered above,

x

‘= 13”226852$

and 4y2~2 = 2.1972 x 10- 3t,where x is in centimeters and t

is in seconds.

Note that, for this example, condition (A2) holds for

(x/~) >1 and condition (A3) holds for t <50 s. Con-

sequently, for the case treated above, the assumption that

(33) reduces to (34) is valid.
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Input Impedance of Coaxial Line to Circular
Waveguide Feed

M. D. DESHPANDE, STUDENT MEMBER, lEEE, AND B. N. DAS

Abstract—The expressions for the real and imaginary parts of the

input impedance seen by a coaxial line driving a thin cylindrical probe
in a dominant TE ~~ mode circular waveguide are derived. The
analysis is cqried out by assuming that the cylindrical post is

replaced by a curvilinear strip having maximum width equal to the
diameter of the probe. Theoretical results on input VSWR and input
impedance seen by a coaxial line are in close agreement with

experimental data.

I. INTRODUCTION

ELECTROMAGNETIC ENERGY is coupled to a

waveguide by means of a probe or loop radiators driven
from a source through a coaxial line. A rigorous solution of

the problem of a cylindrical probe parallel to the electric

field in a rectangular waveguide has been presented by
Collin [1]. EIarrington [2] has found a method for deter-

mining an equivalent network of the junction between a

coaxial line and a rectangular waveguide and has deter-

mined the resistive part of the input impedance seen by a

coaxial line from the stationary formula for the impedance.

An analysis for the determination of variation of both
resistive and reactive parts of the input impedance for

Manuscript received September 14, 1976; revised April 20, 1977.
The authors are with the Department of Electronics and Electrical

Communication Engineering, Indian Institute of Technology, Kharagpur
721302, India.

a cylindrical probe exciting a circular cylindrical waveguide

has not been reported in the literature.

In this paper, expressions for the real and imaginary parts

of the input impedance seen by a coaxial line driving a

cylindrical probe in a dominant TE ~~ mode circular wave-

guide are derived. Assumption of a purely filamentary radial

probe leads to a divergent series for the imaginary part of the

input impedance [2]. For the purpose of analysis the thin

cylindrical probe is assumed to be replaced by a curvilinear

metallic strip in the cross section of the waveguide. This

assumption simplifies the analysis considerably and leads to

an expression for the imaginary part of the input impedance

in the form of an infinite series which is convergent. A

formula for the input impedance seen by a coaxial line is

derived for a circular cylindrical waveguide terminated in a

matched load on one side and in a short circuit at a distance

J!,l from the probe on the other side. The expressions for the

parameters of the equivalent network of the junction are

also derived.

The variation of the input impedance with frequency seen
by a coaxial line is computed for probe length 1,0.6 <1 <0.8

cm, probe diameter d = 0.2 cm, and 0.7 < L ~ < 1.0 cm. The

theoretical results on variation of the input impedance seen

by a coaxial line and the VSWR in a coaxial line are in close

agreement with the experimental data for a radial probe

having a diameter equal to the maximum width of the

curvilinear stfip.


