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Theoretical Analysis of Acoustic Signal
Generation in Materials Irradiated
with Microwave Energy
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Abstract—Stress gradients generated by thermal expansion,
electrostriction, and radiation pressure are sources of elastic waves in
microwave irradiated materials. A theoretical analysis taking into
account induced volume and surface forces due to these interaction
mechanisms is presented. Complete solutions of the dynamical
equations for the one-dimensional special case are given for different
boundary conditions. The closed-form solutions were found to consist
of both a stationary part, whose effect is important only in the
immediate region of the incident electromagnetic wave, and a
traveling part which propagates through the elastic material. Expres-
sions for the Fourier transforms of these solutions are also given. To
quantify these results, pressure and displacement waveforms in
microwave irradiated physiological saline were computed. Thermal
expansion was considerably more effective than either electro-
striction or radiation pressure in converting eleétromagnetic energy
to acoustic energy.

1. INTRODUCTION

HE RAPID ABSORPTION of electromagnetic energy

in irradiated elastic media can result in easily detectable
acoustic signals. Stress waves generated in absorbing media
due to interaction with laser radiation have been studied by
a number of investigators [1]-[5], [9]. In addition, acoustic
transients can be generated in irradiated materials by pulsed
electron beams [8]-{10], or by pulses of microwave radiation
9], {11]-{13}

Human subjects hear a distinct “click” when the head is
irradiated with a high-energy microwave pulse [13]-[15].
Microwave induced acoustic effects in other mammalian
auditory systems have been reported [13], [16]. It is likely
that the “hearing” effect and the generation of acoustic
signals in irradiated materials are closely related
phenomena.

Several physical mechanisms have been suggested for the
energy transfer between an electromagnetic wave and the
induced elastic wave in the interacting medium [1}-[13]. In
this paper, a theoretical analysis is presented in which the
following likely candidates for the causative mechanism are
considered: the volume forces due to thermal stress and
electrostriction, and the surface force due to radiation
pressure.
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I1. THEORETICAL ANALYSIS

To facilitate a quantitative analysis, the problem will be
considered within the framework of the following simplify-
ing assumptions. The irradiated media are assumed to be
electrically and elastically homogeneous and isotropic. Only
a small fraction of the incident radiation ultimately appears
as acoustic energy. Acoustic attenuation will be neglected
and uncoupled thermoelastic theory will be employed, i.e.,
the temperature distribution will be obtained by solution of
the heat equation independent of the mechanical state of the
medium. Finally, all strain components are assumed to be
small enough so that their squares and products are
negligible.

In what follows, let 6;; and e;; denote the components of
the stress and strain tensors, respectively, for an electrically
and elastically homogeneous and isotropic material. Let
6(x,t) denote the increment of temperature above some
reference temperature for which the material is in a state of
zero stress and strain. The strain components are defined in
terms of the displacement vector # having components u,
u,, and u; according to [17]:

Ou;
)

_1 ou;
9T 20\0x;

e (1)
Thermal Expansion

The components of the stress tensor relating stress to
strain and excess temperature are [17], [18]

o-ij S 2ﬂeij -+ lekk(sij - ﬂB(x,t)(SU

)
where §;;is the Kronecker delta, A and p are the usual Lamé
constants, and

(3)
If o is the coefficient of linear thermal expansion and Bis the ‘
bulk modulus of the material, then [17]

B=(3A+2u)o=3Ba.

€ = €11 1 €22 + €33

()

Electrostriction

Let E; denote the components of the electric field intensity
E in the elastic dielectric. The electrostrictive effect is the
deformation of a dielectric medium whose accompanying
strains are proportional to the even powers of the electric
field intensity. The basic field equations governing electro-
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striction have been derived from thermodynamic arguments
[19], [20].

The most general linear relationship that can be con-
structed between stress, strain, and the quadratic powers of
E;is [21]

= 2ue;; + Aeyd;; + aEE; + bEE,O;; 5)

where a and b are descriptive of the electrical properties of

the dielectric and are expressed below in terms of measur-
able quantities, and

E.E; = E3 6)

Under isothermal conditions only the strains influence
the anisotropy of the deformed dielectric. Because the
strains are assumed to be linear, we may write the compo-
nents of the dielectric tensor [20], [21]:

E2 + E3.

&= 85“‘ + £1€;; + szekkéij

(7)
where ¢ is the permittivity of the undeformed media. The
scalar constants ¢, and ¢, are characteristics of the electro-
strictive property and, except in special cases, must be

determined experimentally. Constants a and b are related to
¢, and &, by [20], [21]

a=2—¢ b= —(g +¢)

(8)

Dynamical Equations

The differential equations of motion of an elastic body are

[17], [18]

do,, 00, 0043 Fo- *u,
ox, | Ox, Oxs 1T P o
00, 00,, 00,3 _ Puy
ax1 6x2 6X3 + F2 =f at2
0c13 00,3 0033 0%u;,
= 9
ox. Tax, Tox, THTP ®)
where p is the density of the medium and F;are components
of the body force F.

The dynamical equations of thermoelasticity can be
derived by substituting (2)into (9). Assuming body force Fis
zero and all partial derivatives are continuous, we obtain

0 0*
uVu, + (4 + ) Gk ﬁ——f)-— a—uzl
X4 t
de 0 ?u
AR O Pl
de o o 0u
2 T _ B 0= 3 10
WVous + A+ g = Bo0=p7 (10)
A more compact vector form of (10) is
62
uV2u + (A + pV(V - u) — BVO = pa—; (11)

where
(12)

V- -u=ey.
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The dynamical equations of electrostriction can be ob-
tained by substituting (5) into (9). Again, assuming body
force F is zero and all partial derivatives are continuous, we
obtain

0 0
,LLV (2.+,u) ekk+a 6_)(1 E%‘*“EZ‘EIEZ
0 0 *u
E E3]+ba E.E, = —at—;
0 0 0 _,
1Vu ('1+M)a ekk""“{axlElEZ +b—x‘2‘E2
0 0 62142
+‘6§;E2E3] +ba EkEk ?
0 0
uVius + (A+p)—eu+a|—E E3+ d E2E3
0x3 0x,
0 ., 0 0%u;
+6)C3E3} +b5x—3EkEk—pW (13)

On Determining 0(x,t)

In a region where energy is being dissipated as heat, 6(x,t)
can be determined by solving, with appropriate boundary
and initial conditions, the heat conduction equation [22],
[23]

h(xt) 1 00(xt)

2
V20(x,t) + X —x

(14)

where k is the thermal diffusivity, K is the thermal conduct-
ivity, and h(x,t) is the energy dissipated as heat per unit
volume per unit time. In ‘a material exposed to a time-
periodic electromagnetic wave, the mean heat flux is [19]

h(xt)= —Re V- P (15)
where P is the complex Poynting vector
P=1iE x H* (16)

H is the magnetic field intensity, and the asterisk denotes the
conjugate. It should be noted that the expression for h(x,t) as
written in (15) suppresses the harmonic part of heat fluxina
material exposed to a time-periodic electromagnetic wave.
The harmonic term results in a temperature component
varying at the frequency 2w, where w is the angular
frequency of the incident electromagnetic wave [9]; in what
follows we consider only the mean value of h(x,t) as ex-
pressed in (15).

One-Dimensional Problem

Assume a plane clectromagnetic wave is incident
normally on a semi-infinite body which is elastically and
dielectrically homogeneous and isotropic. The boundary
surface of the irradiated material is formed by the plane
x; = 0. Thus the Poynting vector is directed along the x,
axis.
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- In this one-dimensional problem, derivatives with respect
to x, and x5 vanish; hence

(17)
For simplicity assume the plane wave is linearly polarized
along the x, axis. Then,

Thus, from (10) and (13), we obtain the following nonhomo-
geneous one-dimensional wave equations for the thermo-
elastic and electrostrictive cases, respectively:

€2 =e33=0.

and H1=H2=0.

0%u, , 0%uy d
P~ X3 —ﬁﬁe (19)
and 0%u,y 5 o _,
PaE ~ = (‘H‘b)&‘l‘Ez (20)

where v, the velocity of elastic wave propagation, is related
to the Lamé constants by

pv? = (A + 2p). (21)
In a fluid it can be shown (see [19, p. 145]) that
Oe
a=0 and b= —%pa—p. (22)
Making use of the Clausius—Mossotti law [19],
— 2 (6= (e +2) (23)

where ¢, is the relative dielectric constant and ¢ is the
permittivity of free space. Therefore, for a fluid dielectric,
(20) can be written as

Puy 0%y g 0
et =20 (6, — )6, + 2)— E3. (24
atz ax% 6p (Er )(gr + )axl 2 ( )
The bulk modulus B in a fluid can be expressed as
B = pv? (25)
so that, using (25) and (4), (19) can be written as
Puy L0 Uy _ 0
6t2 axl 3 vTa 5—1 0. (26)

A time-periodic electromagnetic wave is often expressed
in terms of the mean intensity of the energy flow I(x,t) where
I(xt)=Re P =1 Re (E x H*). (27)
For the one-dimensional problem, the transmitted mean
intensity in the elastic dielectric is
1 E3
2Reqn
where 7 is the intrinsic impedance of the material.
The excess temperature, a function only of x, and time,

can be computed by solving the one-dimensional heat
conduction equation

62
— 0(x,t) +
ax% ( 1 )

Ir{xyt) = (28)

hixy,t) 1 90(xy.t)
K x ot

(29)
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using the appropriate boundary and initial conditions.
From (15) and (27),

0
h(x;,t)= —Re V- P= or Ip(xy,t). (30)
Rectangular M icrowave Pulses

For rectangular incident pulses the transmitted intensity
has the form

Iz(xyt) = Ipe™ 2™,

=0,

O<t<T

elsewhere

(31)

where I, is the power density at x; = 0, y is the reciprocal of
the skin depth at a given frequency, and T is the pulsewidth.
The mean heat flux h(x, t) can be computed from (30)and

(31):
h(xy,t) = 2yloe™ 2",
=0,

O<t<T

elsewhere. (32)

During the duration of the rectangular pulse (0 < t < T),
the excess temperature 6(x, ,t), the solution of (29) with (32)
as the forcing function, is [22], [24]

Io
2yK ¢

~2yx1

il

+I_ (47292 —27yx4)

4Ky

0(x1,t) = d} ierfc [

1
- erfc [2vep — =L 0 . (4y2¢2+2yxy)
erc[yd) ¢}+4yKe

- erfc [Zyd) + (33)

&)

where ¢ = . /tk, erfis the error function, erfc = 1 — erf, and

ierfc (z) = _{ erfc (¢) dt.
For short microwave pulses where heat conduction can be
ignored,

29tl e~ 2™
I h(x,.t) dt = T’

0<t<T (34)

where S is the specific heat of the material. It can be shown
that (33) reduces to (34) when x, /2¢ > 1 and 4y2¢? < 1 (see
Appendix).

In nonmetallic materials, the elastic transients propagate
away from the heated region in microseconds while it takes
milliseconds for the temperature to decay. Therefore for
t > T we assume

6(x17

29Tl e 21

, t>T.
pS

O(x,t) ~ (35)
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Substituting (34) and (35) into (26) we obtain

2 2
Ouy  , 0%

61:2 — 0 W=K1te_2yxl, O<t<T
=K,Te ', t>T
=0, t<0 (36)
where
12y%v%al,
K,= ", 37
= 67)
For the electrostrictive case assuming a fluid material,
Puy %y 2
_ 1 _ —2yx1
52 Y o K,e , O<t<T (33)
=0, elsewhere
where
2y Re neple, — (e, + 2)1

3p
For rectangular microwave pulses, solutions to (36) and

(38) will now be given subject to appropriate boundary
conditions.

III. SoLUTIONS

In the solutions to (36) and (38) which follow, expressions
will be given for both displacement u4(x,,t) and pressure
where the pressure p(xyt) is simply the negative of the
normal stress g (x 4,t). Solutions will include both the station-
ary and traveling wave terms for both free- and contrained-
surface boundary conditions.

Boundary and Initial Conditions

For the thermal-expansion mechanism, the relation
governing acoustic pressure and displacement may be found
from the one-dimensional form of (2):

Ouy(x4,t)

p(xlvt) = _(’1 + 2#) Ox
1

+ BO(x,t). (40)

Combining (40) with the results of (4), (21), and (25), the
following relationship between p(x,,t), u,(x,t), and 6(x ,t)
may be found:

plxyt) = —pv? urly) + 3pvPab(xy,t). (41)
0x,

Finally, substituting the results of (34) and (35)into (41), the

pressure—displacement relationship for the thermal-

expansion mechanism may be found:

2 Ouy(xy,t) 6ocyv*I, e 2%t
0x4 S

(tU(@) - (- T)U( - T))

where U(¢) is the unit step function.
In a similar manner, the relation governing acoustic

pxi,t) = —pv

(42)
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pressure and displacement may be found for the electro-
striction mechanism. The one-dimensional form of (5) is

0
plert) = —(+20) 21800 oy )
1
Substituting (21)-(23) and (28) into (43), we obtain
Ouy(xy,t)
a2 1V
plst) = —pvt =50 =
+ IT(xl,t)s()(gr - 1)(8, + 2) Re [’1] (44)

3

Finally, substituting the results of (31) into (41), the
pressure—displacement relationship for the electrostriction
mechanism may be found:

2 6u1(x1,t) + 1080(8r - 1)(8r + 2) Re-[”]
0x4 3

e Ut — Ut — T)). (45)

plxyt)= —pov

For a constrained surface, the boundary conditions are

us(0,t)=0 lim |uy(xq,t)| < o0 (46)

X1
which hold for both mechanisms.

For a free surface, an additional mechanism for generat-
ing acoustic waves must be incorporated into the boundary
conditions. A surface radiation pressure is now present on
the materials and forms a part of the free-surface boundary
conditions. For both bulk mechanisms, the general bound-
ary conditions are

J 21'(0’t), 0<t<T
p(Ot)= c
‘ 0, t>T @7)
m |uy(x,t)| < oo (48)

X1 >0

where I,(0,t) is the intensity of the reflected wave at the
surface and ¢ is the speed of light. For thermal expansion,
(42) combined with (47) becomes

Ouy(xq,t)
0x,

_ 6yl

x1=0 ps

[fU@) - (¢t — T)U(t — T)]

21,(0,)
— e [U®)—U(—T)] (49)

For electrostriction, (45) combined with (47) becomes

aul('xl’t) _ IO Re [”]Bo(gr B 1)(8r + 2) _ 2Ir(0’t)
0%y loy=o 3pv? pvic
U@ - UE—T)] (50)
In all cases the initial conditions are
Ju(x,t
"l—éilv) = uq(xq,t) ) = 0. (51)
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Solution Methods

In addition to finding the solution to (36) and (38)in terms
of the displacement u,(x .,t), the complete analysis of the
electromagnetic field induced acoustic waves should include
finding the pressure p(x,,t) as well as the magnitude of the
Fourier transforms of u,(x,t) and p(x,t). In the following,
equations (36) and (38) were first solved for the displacement
u,(x;,t) and the corresponding pressure function p(x ,,t) was
then found using equation (42) or (45). After u(x,t) and
p(x,t) have been determined, the Fourier transforms of
these quantities can then be taken.

Equations (36) and (38) may be solved using several
different techniques. One technique, used by Hu [6] in
solving a similar problem, involves first removing the time
dependency via a Laplace transformation and then finding
the time-independent Green function under the given
boundary conditions. The time-independent solutions to
(36) and (38) are then found by the use of superposition of
the Green function with the spacial source distribution.
Finally, applying an inverse Laplace transform to the time-
independent solution restores the time dependency to the
solution. ‘

Considering the geometry of the problem, a somewhat
simpler approach is to utilize the technique used by Gour-
nay [4]. First the equation together with the appropriate
boundary and initial conditions is Laplace transformed to
remove the time dependency. The resulting equation is now
a second-order ordinary differential equation in space,
which is easily solved by finding the homogeneous and
particular solution using the standard techniques of ordi-
nary differential equations. The boundary and initial condi-
tions are then applied to the time-independent solution. The
inverse Laplace transform is then taken to yield the com-
plete solutions to (36) and (38). An additional benefit of this
technique is the ease in obtaining the Fourier transform of
uy(x4,t) and p(x,,t). Providing the region of convergence of
the Laplace transform of u(x ,¢) or p(x .,t) contains the jw
axis in its interior, a simple transformation of s to jw
converts the Laplace transform to the Fourier transform
[25]. This technique has been used to find the solutions given
below.

The displacements and pressures, due to each of the
various electromagnetic-to-acoustic wave mechanisms dis-
cussed above, will be given in three parts below, for both the
free-surface and constrained-surface boundary conditions.
In the first part, the displacement and pressure due to
the bulk thermal-expansion mechanism will be found for
both boundary conditions. Next, the displacements and
pressure due to the electrostriction mechanism for the two
boundary conditions will be found. Finally, the magnitude
functions of the Fourier transforms of #,(x,,t) and p(x,.t)
will be determined for all the electromagnetic-to-acoustic
energy mechanisms considered above, for both free- and
constrained-surface boundary conditions.

Thermal Expansion

Constrained Surface: If we assume the surface of the
material to be constrained, (36} must be solved subject to the

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-25, NO. 11, NOVEMBER 1977

aforementioned boundary and initial conditions. Subject to
these conditions the solution to equation (36) may be
written in two parts: a stationary part denoted by u; ,anda
traveling part denoted by u,.,. Therefore, the displacement
due to thermal expansion becomes

Uy (X 1,) = U (X 1t) + Uprg(X 1,8 (52)
where
3o —oyx —29x
Uy (x1,t) = q [—te=1U(t) + (¢ — T)e” >™U(t — T)]
(53)
and
3aly | [e7 27
Uy lX1,t) = W{ 7 sinh 2yvt} U(z)
+ (t—-)El —isinh2 v(t—ic—1
v 2y 4 v
. U (l’ — ﬁ
v
e—2)‘x1
— t 370 sinh 2yv(t — T)} Ui-T)
+ [(—t +T+ fi)
v
1 . X1
R h t— —_ =
+ 2yvsm 2yv ( " ) ]
- U(t—T—x—Ul)}. (54)

The pressure p(x4,t) due to thermal expansion in a fluid is
given by (42). A general expression for the pressure wave
with a thermal-stress forcing function is

plx1,t) = 30‘%10{[(27"1 sinh 2yvt]U(¢)

+ {1 — cosh 2yv (t—x—vl”

- U (t - %) — [e~ 2™ sinh 2y0(t — T)JU(t — T)

+ [cosh 2yv(t— T—fvi) — 1} U(t— T—i‘v—l)}.
(55)

Free Surface: For afree surface, considering only thermal-
expansion effects, the boundary condition on the materials is
(49). Solving (36) under these conditions for the displace-
ment, u,(x ; ,t) is given by (52), where u, i(x4,t) is given by
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(53) and uy . (x,,t) is given by Using (45) to relate stress to displacement, an expression
ax can be obtained for p(x,t). A general expression for the
alye” ™t : . - . .
Uy (xy,t) = ;—S{[sinh 2yut|U(t) pressure wave with the electrostriction forcing function is
vyp
. ,— 1 2)I
— [sinh 2yo(t — TYU( — T)} plet) = 26 [n]eo(e, . Yer +2)lo
21,0, 3al
N [_Q (t _ ﬁ) b
pue v e . {[e“”"‘ cosh 2yvt|U(¢)
X1 X1
{1 —cosh 2y [t —=22) ) |U [t = 22
(1 oS ( v ))} ( v ) — [e= %™ cosh 2yo(t — T)|U(t — T)
21,(0,) Xy 3ol X b
a [ pve (t_T_U +2UVPS — lsinh 2yv(t—7l)}U(t——7l)
1= cosh 2w |t — T -2 ) x x
s oA v + sinh2yv(t—T—'vl)JU(t—T-71).
U (t ~T- %) (56) (60)
Using (42) the general expre§§ion for the pressure wave for Free Surface: For a free surface, the solution to (38) is
a free-surface boundary condition is given by (52), where u,(x,,t) is given by (58) and
Sowlge 2™
plept) = 0% ([sinh 2yue]U () Re [1]eo(e, — 1)(e, + 2)Io
S ulTk(xlat) = 6'))02/7

— [sinh 2yo(t — T)]JU(t — T)}
21,(04)  3owl, .

+ sinh 2yv (t — ﬂ)]
c S v

| ‘}(I“ﬁ) } —Si““””(“%”‘](‘ﬁ)

: {[e'”"1 cosh 2yvt]|U(t)

v
. — [e72"1 cosh 2yv(t — T)JU(t — T)
210,t) 3wl sinh 29 (t o il_) i
. ¢ N ’ v + sinthU(t—T—%”U(t—T—ﬁ”
v
. U(t—T—%). (57) +2I'(0’I)Ht—ﬁ]u(t—x—‘)
Electrostriction poe v v
Constrained Surface: For a constrained surface, the solu- ‘ X1 X4
. . ' —t—=T—-—{Ult—-T-="=])). 61
tion to (38) is given by (52) where [ ] ( ) (61)
Uy (X 1st) = Re [11]eo (e _21)(8' +2)l Using (46) to relate stress and displacement, the corre-
6yvop sponding pressure function is
[e7?™U(t — T) — e~ 2=1U(t)] (58
and ( ) ( ) ( ) p(Xl,t) — Re [’1]80(81‘ - 1)(81‘ + 2)10
Re [n]eo(e, — 1), + 2)1, 3
ulTR(xl’t) = 6'))1)2[)
: {[e”"1 cosh 2yut|U(t)
: {[e‘”"1 cosh 2yvr]U(t) '
. Xy X4
— [e7 " cosh 2yv(t — T)JU(t — T) - _COSh 2yv (t - 7)] v (t - 7)
+ [1 — cosh 2yv (t - %” U (t - %) _ [fe—zvm cosh 2yo(t — T)|U(t — T)
X + cosh2yv(t—T—§§)}U(t—T—ﬁ)>
+ cosh2yv(t—T—71)—1} ] v v
. +w[U(t—%)—U(t—T—%)}.
. t— T — - . 59
ofe-m-%)] ) 62)
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IV. FOURIER TRANSFORMS

The spectral content of the displacement and stress
functions is particularly pertinent to the study of the micro-
wave hearing phenomenon. Expressions of the magnitudes
of the Fourier transforms of the respective functions are
given below. Approximations are given when the exact form
of the expression is very lengthy. All approximations hold
for 2yx, » 1.
Constrained Surface

Thermal Expansion:

1/2
_ 1/2 =231 | o= 2vx1 _ X1
12 /2y, [1 — cos (wT)] (1 +e (e 2 cos (a) . )))
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V. AN ExAMPLE

From the above equations, it is possible to compute both
the displacement and stress waveforms in a semi-infinite
fluid irradiated with a square microwave pulse. As an
example, consider the result of irradiating physiological
saline with a 10-us-wide 3.0-GHz microwave pulse with 27
W/cm? incident power density. For physiologicalsaline, the
surface transmitted power density would then be about 10

| FloGea]| = oS e (63)
_12,2a0%%I, |(1 — cos (@T))*?
Electrostrictionl:F [p(XI’t)]l - § [ ®* + 4ov’y? ] (64)
| Fluy (x,,)]| = 2\/5? Re [’1]803(;' — 1), +2)I,
[1 + cos ((Dt)]llz [1 4 e 2™ (e—2yx1 _ 2 cos (9&))}1/2
2 2.2 - (65)
w(w? + 4v°y?)
_2/2yv Re [neofe, — 1)(e, + 2)Lo [[1 + cos (wT) 12
| Flp(x1,8)]| ~ 3 [ o 1 407y ] (66)

Free Surface:

As noted above, when the interface surface is considered
to be free, an additional forcing function on the material
appears in the form of the surface-radiation-pressure bound-
ary condition.

The surface radiation pressure will be treated as a separate
forcing function in the Fourier transforms below. For the
thermal-expansion forcing function,

_6/2avyl, [[1 — cos (wt)]'?
Pl o] = S22 Lo ol

oy, [[1 — wT)]Y?
Pl = 2272 (108 (7]

For the electrostriction forcmg function,
4./27%v Re [n]eo(e, — 1)(e, + 2)I
Pl )] = 2220 Re lrliler = 1+ 20

[t = cos (wt)]'?
0 (0? + 40%y?)
4 72v? Re [y]eo(e, — 1)(e, + 2)I.
| Flp(xy,t)]| ~ \/—p ['7]30( ) Mo
[t = cos (@T)]V2
w(wz T 402))2) :
For the surface-radiation-pressure boundary condition,

(67)

]. (68)

(69)

(70)

uy(x - 2\/§Ir(0’t) [1 - cos (wT)]¥?
Flabeatlll == [ ? ] (1)

W/cm?. The appropriate physical constants for this specific
case are listed in Table L

At a distance of 10 ¢m inside the fluid, the peak displace-
ment and pressure values were computed for the two bulk
mechanisms in the constrained-surface case and the two
bulk mechanisms plus the surface radiation pressure in the
free-surface case. These peak values are listed in Table 1L

Some representative waveforms are shown in Figs. 1-4.
Figs. 1 and 2 show, respectively, the pressure versus time
waveforms due to thermal expansion alone for the
constrained- and free-surface boundary conditions. Figs. 3
and 4 show the respective magnitude plots of the Fourier
transforms of Figs. 1 and 2.

VI. DiscussIoN

Figs. 1 and 2 are in general agreement with the experimen-
tal results previously obtained by Foster and Finch [11],
Oswald et al. [10], Carome et al. [2], Gournay [4], Bushnell
and McCloskey [7], and White [9]. References [2], [4], and
[9], have presented experimental results of stress develop-
ment in liquids by irradiation with lasers. Reference [7] has
presented similar experimental results using solids irra-
diated with lasers, while [10] has presented experimental
results of displacement in solids due to electron-beam
irradiation. Finally, both [9] and [11] have obtained exper-
imental results for microwave induced elastic waves in
liquids. The results of Foster and Finch [11], in particular,

tend to support the assumptions made in arriving at (36)
above.
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TABLE 1

CoNSTANTS USeED FOR COMPUTATION OF DISPLACEMENT

AND STRESS WAVEFORMS IN PHYSIOLOGICAL SALINE

10°

108

951

SYMBOL PROPERTY UNITS VALUE
a coeff. of linear (%)t 1074
thermal expansion
[ volume density gm/cm3 1.0
v speed of sound cm/sec 1.5(105)
S specific heat orgs/gmoc 4.19(107)
Y361z reciprocal of the em™ 1 0.62
e skin depth
c speed of 1light cm/sec 3(]010)
& relative diclectric con- dimensionless 80
stant of physiological
saline
n intrinsic impedance of ohms 40,1 + j.77
physiological saline
5T 1.0
60 1 F \
. 45T 0.8 1
~
E 304 s
o
~
o 157 06T
S o Ly —— = - ’
> O 20 40 60 80 100 120 140 160 180 200 Q.
15T - +
_ t (usec) 04
Z -30¢ 5
a
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-60 1+ 5
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Fig. 1. Pressure versus time for the thermal-expansion mechanism— 109 10! 102 103 104
constrained-surface case. FREQUENCY (Hz)
Fig. 3. Normalized magnitude plot of the Fourier transform of pressure
60 + for the thermal-expansion mechanism—constrained-surface case.
as +
&E‘ 30 +
{, 1.0 T
S 15t |
@
c
> [+] + + + + + 4 + 4 t 1 0.8 +
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Fig. 2. Pressure versus time for thermal-expansion mechanism—free-
surface case. 0.2 +
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Figs. 3 and 4 illustrate the low-pass characteristics of the
electromagnetic-to-elastic wave conversion process via the

thermal-expansion mechanism. Although not treated in

the above analysis, consideration of the losses due to

100 10! 102

103

104

FREQUENCY (Hz)

10°

108

Fig. 4. Normalized magnitude plot of the Fourier transform of pressure
for the thermal-expansion mechanism—free-surface case.
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TABLE 11
PEAK VALUES DISPLACEMENT AND PRESSURE AT x = 10 cm
INSIDE PHYSIOLOGICAL SALINE IRRADIATED WITH A
3-GHz 10-us-WiDE PULSE. I, = 10 W/em? (PEAK)

Forcing Function Form of Solution Peak Value Units

A. Constrained Surface Boundary Condition N
Thermal Expansion Displacement 7.17(10'9) cm
Electrostriction Displacement . 1.8(10_11) cm
Thermal Expansion Pressure 65.04 dyncs/cm2
Elcctrostriction Pressure 3.55(10_1) dyncs/cm2

B. Free Surfacc Boundary Condition

Thermal Expansion
Electrostriction

Surface Radiation

Pressure Displacement
Thermal Expansion Pressurc
Electrostriction Pressurec

Surfacc Radiation

Pressure Pressure

Displacement

Displacement

5.13(107%)  cn
11

4.17(10°° %) cm
7.41(10°1%)  cm

44,22 dyncs/cm2
5.09(10']) dynes/cm2
1.111(1072) dyncs/cmz

dispersive elastic wave attenuation would tend to further
attenuate the high-frequency components of the displace-
ment and pressure waves.

Although the theoretical analysis of the thermal-
expansion mechanism presented in this paper is in general
agreement with analyses presented elsewhere, some differ-
ences should be pointed out. OQur analysis of the thermal-
expansion mechanism for the one-dimensional problem
results in a nonhomogeneous wave equation (equation (19))
with a forcing function greater by a factor of three than that
found in previous analyses [2], [4], [9] Essentially our
analysis shows that the volume coefficient of thermal expan-
sion (3«) should be employed in the one-dimensional case
instead of the linear coefficient of thermal expansion (a).
With the exception of this constant, our analysis results in
essentially the same traveling wave solutions as presented by
Carome et al. [2] and Gourney [4]. Our solutions are more
complete, however, in that both the stationary and traveling
components are considered. Our solutions are also pre-
sented in a form more readily adapted to computing actual
waveforms in that no changes in the variables x, and ¢t are
necessary to interpret results.

A general theoretical analysis of stress wave generation by
electrostriction is also presented with complete solutions for
the one-dimensional special case. In addition, complete
solutions are given for the one-dimensional case where
surface forces due to radiation pressure are present. Fourier
transforms of all traveling wave solutions are presented as
an aid in computing the spectral content of the electro-
magnetically induced acoustic signals. The spectra of
induced acoustic waveforms is of particular usefulness in the
study of the microwave hearing phenomenon.

Applications of the phenomena discussed in this paper
have been described elsewhere [1]-[11], but particularly by
White [8], [9]. These phenomena can be used to measure

properties of the input electromagnetic radiation, properties
of the irradiated material, and as a transducer for generation
of acoustic signals in elastic materials.

VII. CoNCLUSIONS

Three different physical transduction mechanisms for
converting electromagnetic energy to acoustic energy have
been studied in the above analysis. A numerical example was
considered in which physiological saline was irradiated with
pulsed microwave energy and the resulting displacements,
pressures, and magnitude plots of the Fourier transform of
these quantities were computed for each of the three trans-
duction mechanisms. For the example of an irradiated
semi-infinite layer of physiological saline, the computed
peak pressure amplitude due to thermal expansion is much
greater than the peak pressure generated by either electro-
striction or surface radiation pressure.

For the constrained-surface case, a 10-us-wide 3.0-GHz
pulse having an incident intensity of about 27 W/cm?
resulted in a computed peak pressure of approximately 65
dyn/cm? (see Fig. 1). Moreover, the spectral content of the
waveform is predominately below 20k Hz as shown in Fig. 3.
Such an elastic wave, if generated in a human head, might
reach the cochlea via bone conduction causing a distinct
auditory sensation.

However, the human head is not a semi-infinite layer of
physiological saline, but rather an aspherical multilayer
body with a semirigid surface. The acoustic properties of the
various tissue layers of the head are not wellknown at audio
frequencies. The above analysis considered an elastic mate-
rial in which only longitudinal acoustic waves are generated
and propagated. For analysis of acoustic pulses generated in
the human head, it will be necessary to also consider shear
wave generation and propagation. The characteristics of the
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acoustic signal which reaches the ear are also likely to be
determined in part by the natural frequencies (acoustic
resonances) of the head itself. Until these aspects are con-
sidered in detail, the above work provides a useful compari-
son of three different electromagnetic-to-acoustic energy
transduction processes.

APPENDIX

In the above analysis it was stated that under certain
conditions (33) reduced to (34), resulting in a simplified
expression for the excess temperature function. In what
follows this simplification is justified.

Equation (33) may be rewritten as follows:

_ 2o | _ (X o= (312012
=% [ (2¢)( ~et(g)) +
. IO —29x
7K ¢
ﬂ_ (47242 —2yx) — =
+4Kve 1 —erf{2y¢ 2¢

+~I9~—e‘4v2"’2+2”‘) [1 erf (2y¢ + ¢” (A1)

4Ky
where the identities ierfc (z) = —z erfc (z 1/\/_ -z
and erfc (z) = 1 — erf (z) have been used. As stated above,
the two conditions necessary for (33) to simplify to (34) are

‘ZE >1 (A2)
and
4y2¢* < 1. (A3)
From these two conditions, it follows that
2% ¢ > 2y¢. (A4)
Applying (A4) to (A1) results in
L2
0(x,t) ~=04 ( )(1 erf( ))
x/2¢> 274 K
I
o~ x/24)2 o= 2vx 4 20
+ ] 4Ky
. {e“”z‘“‘”") ll + erf }
+ A2 1] [ —erf (2¢) ]} (AS)

where the identity erf (—z) = —erf (z) has been used. For
large values of its argument z,
lim erf (z) = 1.
For example, for z > 10, 1 > erf (z) > 1 — 2 x 10™** [26].
Hence, applying condition (A2) to (A5)
x/2¢% 279 I,

O(X,t) ~__9 e—Zyx[e4y2¢z _ 1]

A6
and x/2¢> 1 2K ( )
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Expanding the term in brackets into a Taylor series and
applying condition (A3)

x/20> 1 I,
0(x,t ~ e 1 + (y*p?) -1
( ) andayzgzer 29K [ ( ) ]
I 2
_ 2')) Ig¢ e—lyx (A7)

where the higher order terms in the series expansion have
been dropped because of condition (A3).
Finally, noting that

K \12
¢ = (xt)"? = (;Et) (A8)
(A7) reduces to
H(X,t) x/2¢> 1 o 29tl, PP (A9)
and 47242 <1 pS

which is (34).

A question remains as to whether conditions (A2) and
(A3), in fact, hold for the case of a liquid irradiated with
microwave pulses. For the example considered above,

2¢

and 4y2¢? = 2.1972 x 107 3t, where x isin centimeters and ¢
is in seconds.

Note that, for this example, condition (A2) holds for

(x/\/ )> 1 and condition (A3) holds for t < 50 s. Con-

sequently, for the case treated above, the assumption that
(33) reduces to (34) is valid.

* 13.2268—'\%
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Input Impedance of Coaxial Line to Circular
Waveguide Feed

M. D. DESHPANDE, STUDENT MEMBER, IEEE, AND B. N. DAS

Abstract—The expressions for the real and imaginary parts of the
input impedance seen by a coaxial line driving a thin cylindrical probe
in a dominant TE,, mode circular waveguide are derived. The
analysis is carried out by assuming that the cylindrical post is
replaced by a curvilinear strip having maximum width equal to the
diameter of the probe. Theoretical results on input VSWR and input
impedance seen by a coaxial line are in close agreement with
experimental data.

I. INTRODUCTION

LECTROMAGNETIC ENERGY is coupled to a

waveguide by means of a probe or loop radiators driven
from a source through a coaxial line. A rigorous solution of
the problem of a cylindrical probe parallel to the electric
field in a rectangular waveguide has been presented by
Collin [1]. Harrington [2] has found a method for deter-
mining an equivalent network of the junction between a
coaxial line and a rectangular waveguide and has deter-
mined the resistive part of the input impedance seen by a
coaxial line from the stationary formula for the impedance.
An analysis for the determination of variation of both
resistive and reactive parts of the input impedance for
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a cylindrical probe exciting a circular cylindrical waveguide
has not been reported in the literature.

In this paper, expressions for the real and imaginary parts
of the input impedance seen by a coaxial line driving a
cylindrical probe in a dominant TE;, mode circular wave-
guide are derived. Assumption of a purely filamentary radial
probe leads to a divergent series for the imaginary part of the
input impedance [2]. For the purpose of analysis the thin
cylindrical probe is assumed to be replaced by a curvilinear
metallic strip in the cross section of the waveguide. This
assumption simplifies the analysis considerably and leads to
an expression for the imaginary part of the inputimpedance
in the form of an infinite series which is convergent. A
formula for the input impedance seen by a coaxial line is
derived for a circular cylindrical waveguide terminated in a
matched load on one side and in a short circuit at a distance
L, from the probe on the other side. The expressions for the
parameters of the equivalent network of the junction are
also derived.

The variation of the input impedance with frequency seen
by a coaxial lineis computed for probe length 1,0.6 < I < 0.8
cm, probe diameter d = 0.2 cm, and 0.7 < L, < 1.0 cm. The
theoretical results on variation of the input impedance seen
by a coaxial line and the VSWR in a coaxial line are in close
agreement with the experimental data for a radial probe
having a diameter equal to the maximum width of the
curvilinear strip.



